Intro 00000000 Theory 00000000000 Estimation 000000 Results 0000000 Robustness

Entropy and RE 00 Conclusion 0

Estimating the Value of Information

Ohad Kadan and Asaf Manela

Washington University in St. Louis

May 2018

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
●0000000	00000000000	000000	0000000	000	00	O
Motivat	ion					

- How much would investors pay to receive investment-relevant information?
- Understanding the private incentives to collect information is a central issue for market efficiency
- Quantifying the value of information is key for:
 - pricing/ranking different information services
 - compensating macro and firm-level analysts
 - penalizing insider trading
 - improving information services for investors

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	00000000000	000000	0000000	000	00	0

This paper

- We present a framework for evaluating informative (but noisy) signals from the point of view of a utility maximizing investor
- Illustrate our framework by estimating the values of key macroeconomic indicators
- Provide comparative statics for the determinants of the value of information

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00●00000	00000000000	000000	0000000	000		O
Main io	lea					

- Risk averse investor optimizes her portfolio and consumption using either
 - 1. prior probabilities on the states of nature, or
 - 2. posterior probabilities based on an information source (e.g., GDP report)
- Value of information is the price that renders her indifferent between the two cases
 - similar to Grossman and Stiglitz (1980) but more realistic preferences and markets
- Key ingredients: preferences, asset prices, prior/posterior probabilities (forward looking)

Prior and posterior probabilities

- We estimate prior and posterior probabilities from S&P 500 option prices around informational releases (say GDP growth)
 - Prior = probability distribution observed just before the signal is released
 - Posterior = probability distribution immediately after the signal is released
- Use this posterior to generate a "what if" analysis allow the investor to trade using an updated distribution
- With a large sample of realized distribution changes we can estimate an average value of information

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE
 Conclusion

 00000000
 0000000
 000000
 000
 000
 00
 0
 0

Why not use announcement returns?

- Price changes provide an indication of signal informativeness
 - ▶ Fama, Fisher, Jensen, and Roll (1969)
- But do not directly provide its economic value
- One needs a model of
 - \blacktriangleright preferences \rightarrow willingness to trade on new information
 - \blacktriangleright investment opportunities \rightarrow how can they trade
- Risk aversion and the willingness to substitute current and future consumption are particularly important

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE
 Conclusion

 00000000
 000000000
 000000
 000
 000
 00
 0
 0

Preview of what we obtain

- We derive an estimable expression for the value of information associated with an information source
 - GMM estimation is natural
- Estimate values of information under standard preference parameters (discount rate, risk aversion, and EIS)
- Show how these change with preference parameters

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE

 00000000
 000000000
 0000000
 0000000
 000
 000

Related literature - Psychic vs. instrumental value

 Cabrales et al. (2013 AER) study log utility agent faced with a static investment problem

Conclusion

- Value of information equals mean reduction in entropy
- We generalize to a dynamic environment and provide an estimation method
- Log utility case is upper bound on "ruin-averse" preferences, but not on recursive utility, which we study

Recursive utility agent may like early resolution of uncertainty

- Entirely about the attitude of the agent toward uncertainty, even when she cannot alter her consumption plan
- Epstein, Farhi, and Strzalecki (2014 AER) calibrate this psychic value of information
- We estimate also the instrumental value of information reflecting the improvement in consumption and investment
- Decompose the value of information into these two channels

Related literature - Private vs. public information

- We estimate the value of both:
 - 1. Private information: trade on information at stale prices
 - 2. Public information: trade at prices that reflect new information
 - Depart from literature focusing on public/social value (Hirshleifer, 1971 AER)
- Information acquisition / markets for information literature
 - Quantitative work in this field is rare, and has thus far relied on stronger assumptions
 - Savov (2014 JFE), Manela (2014 JFE)
 - We move beyond CARA utility to commonly used preferences
 - Can be important (Breon-Drish, 2015; Malamud, 2015)

Intro Theory Estimation Results

Robustness

Entropy and RE 00 Conclusion 0

State space and preferences

- Discrete time, infinite horizon
- Random state $z_t \in \{1, ..., n\}$
- Markovian state transition probabilities $p(z_{t+1}|z_t)$
- State prices $q(z_{t+1}|z_t) > 0$
 - no arbitrage

The agent's problem

Price-taking consumer-investor with Epstein-Zin utility

$$V_t = \left[(1 - \beta) c_t^{1-\rho} + \beta \mu [V_{t+1}]^{1-\rho} \right]^{\frac{1}{1-\rho}}$$

V_t is utility starting at some date-t

Certainty equivalent function is homogeneous

$$\mu\left[V_{t+1}\right] = \left(E_t\left[V_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{1-\gamma}}$$

central role in ex-ante value of information

- Recursive preferences are widely used to fit asset pricing facts
 - $\blacktriangleright \ \rho = \gamma$ give expected utility with CRRA
 - $\blacktriangleright \ \rho = \gamma = 1$ give log utility

Intro Theory Estimation Results Robustness Entropy and RE Conclusion

The agent's problem

Price-taking consumer-investor with Epstein-Zin utility

$$V_t = \left[(1 - \beta) c_t^{1-\rho} + \beta \mu \left[V_{t+1} \right]^{1-\rho} \right]^{\frac{1}{1-\rho}}$$

 V_t is utility starting at some date-t

Certainty equivalent function is homogeneous

$$\mu\left[V_{t+1}\right] = \left(E_t\left[V_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{1-\gamma}}$$

central role in ex-ante value of information

Recursive preferences are widely used to fit asset pricing facts

- $\rho = \gamma$ give expected utility with CRRA
- $\blacktriangleright \ \rho = \gamma = 1$ give log utility

Intro Theory Estimation Results Robustness Entropy and RE Conclusion

The agent's problem

Price-taking consumer-investor with Epstein-Zin utility

$$V_t = \left[(1 - \beta) c_t^{1-\rho} + \beta \mu [V_{t+1}]^{1-\rho} \right]^{\frac{1}{1-\rho}}$$

 V_t is utility starting at some date-t

Certainty equivalent function is homogeneous

$$\mu\left[V_{t+1}\right] = \left(E_t\left[V_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{1-\gamma}}$$

central role in ex-ante value of information

- Recursive preferences are widely used to fit asset pricing facts
 - $\rho = \gamma$ give expected utility with CRRA

•
$$\rho = \gamma = 1$$
 give log utility

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	0000000000	000000	0000000	000	00	0

Private information setup

 \blacktriangleright Agent can buy stream of signals s_t from information source α

- GDP, Employment, ...
- Matrix of conditional probabilities $\alpha(s_t|z_{t+1})$
- Observing a signal, agent forms posterior probabilities $p_{\alpha}(z_{t+1}|s_t, z_t)$ and makes a consumption/investment decision

Order of Events During Time t							
State z_t	Investor	Investor chooses consumption c_t					
realized		and investment portfolio weights	and prices adjust				

Question: How much would an agent be willing to pay to privately observe such a stream of signals?

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	0000000000	000000	0000000	000	00	0

Private information setup

 \blacktriangleright Agent can buy stream of signals s_t from information source α

- GDP, Employment, ...
- Matrix of conditional probabilities $\alpha(s_t|z_{t+1})$

• Observing a signal, agent forms posterior probabilities $p_{\alpha}(z_{t+1}|s_t, z_t)$ and makes a consumption/investment decision

Order of Events During Time t							
State z_t	Investor	Investor chooses consumption c_t	Signal s_t becomes public				
realized	observes	and investment portfolio weights	and prices adjust				
	signal s_t	w_{t+1}					

Question: How much would an agent be willing to pay to privately observe such a stream of signals?

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	0000000000	000000	0000000	000	00	0

Private information setup

 \blacktriangleright Agent can buy stream of signals s_t from information source α

- GDP, Employment, ...
- Matrix of conditional probabilities $\alpha(s_t|z_{t+1})$

• Observing a signal, agent forms posterior probabilities $p_{\alpha}(z_{t+1}|s_t, z_t)$ and makes a consumption/investment decision

Order of Events During Time t							
State z_t	Investor	Investor chooses consumption c_t	Signal s_t becomes public				
realized	observes	and investment portfolio weights	and prices adjust				
	signal s_t	w_{t+1}					

Question: How much would an agent be willing to pay to privately observe such a stream of signals?

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	000000	000000	000	00	0

Public information setup

 \blacktriangleright Agent can buy stream of signals s_t from information source α

- GDP, Employment, ...
- Matrix of conditional probabilities $\alpha(s_t|z_{t+1})$

• Observing a signal, agent forms posterior probabilities $p_{\alpha}(z_{t+1}|s_t, z_t)$ and makes a consumption/investment decision

Order of Events During Time t							
State z_t	Investor	Signal s_t becomes public	Investor chooses consumption c_t				
realized	signal s_t		w_{t+1}				

Question: How much would an agent be willing to pay to publicly observe such a stream of signals? The value of information

Estimation

Theory

Merton-Samuelson consumption/investment problem albeit with an additional signal s:

$$V(a_t, z_t, s_t) = \max_{c_t, \mathbf{w}_{t+1}} \left\{ (1-\beta) c_t^{1-\rho} + \beta E_t \left[V(a_{t+1}, z_{t+1}, s_{t+1})^{1-\gamma} \right]^{\frac{1-\rho}{1-\gamma}} \right\}$$

Robustness

Entropy and RE

Conclusion

s.t. the wealth constraint $a_{t+1} = (a_t - c_t) \sum_{i=1}^n w_{it+1} R_{it+1}$

Definition

The value of information structure α in state z_t is the fraction of wealth Ω the agent is willing to give up to observe a stream of signals s_t , s_{t+1} , ..., each generated by α

$$\mu\left[V\left(a_{t}\left(1-\Omega\right), z_{t}, s_{t}; \alpha\right) | z_{t}; \alpha\right] = V\left(a_{t}, z_{t}; \alpha_{0}\right)$$

where $\mu \left[\cdot \right]$ is the certainty equivalent over the signal s_t

The value of information

Estimation

Theory

Merton-Samuelson consumption/investment problem albeit with an additional signal s:

$$V(a_t, z_t, s_t) = \max_{c_t, \mathbf{w}_{t+1}} \left\{ (1-\beta) c_t^{1-\rho} + \beta E_t \left[V(a_{t+1}, z_{t+1}, s_{t+1})^{1-\gamma} \right]^{\frac{1-\rho}{1-\gamma}} \right\}$$

Robustness

Entropy and RE

Conclusion

s.t. the wealth constraint $a_{t+1} = (a_t - c_t) \sum_{i=1}^n w_{it+1} R_{it+1}$

Definition

The value of information structure α in state z_t is the fraction of wealth Ω the agent is willing to give up to observe a stream of signals s_t , s_{t+1} , ..., each generated by α

$$\mu\left[V\left(a_{t}\left(1-\Omega\right),z_{t},s_{t};\alpha\right)|z_{t};\alpha\right]=V\left(a_{t},z_{t};\alpha_{0}\right)$$

where $\mu\left[\cdot\right]$ is the certainty equivalent over the signal s_t

Convenient transformation

00000000000

Theory

Easier to work with the transformed value of information

$$\omega(z;\alpha) \equiv -\ln(1 - \Omega(z;\alpha))$$

• $\Omega \approx \omega$ when these are close to zero

We can then write:

$$\omega\left(z_{t};\alpha\right) = \log \mu\left[e^{\rho\left\{v\left(z_{t},s_{t};\alpha\right) - v\left(z_{t};\alpha_{0}\right)\right\}}|z_{t};\alpha\right]$$
(1)

Robustness

Entropy and RE

Conclusion

▶ Value of information depends on the (nonlinear) average improvement in the log value-to-consumption ratio $v \equiv \ln \frac{V}{c}$

- $v\left(z_t,s_t;\alpha\right)$ is informed log value-to-consumption ratio
- $v(z_t; \alpha_0)$ is uninformed log value-to-consumption ratio

Moment conditions for the value of information

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

Robustness

Entropy and RE

Conclusion

with

Theory

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- ▶ n moments with n unknown $\omega(z_t; \alpha)$ for $z_t \in \{1, ..., n\}$
- Assumed "knowns": preference parameters β, γ, ρ, state prices q, posterior probabilities p, and the log value-to-consumption ratio without information v (z_t; α₀)
- $\Gamma(z_t, s_t; \alpha)$ is the expectation of a non-linear function of (gross) asset returns $q(z_{t+1}|z_t)^{-1}$, future $v(z_{t+1}; \alpha_0)$, and future values of information $\omega(z_{t+1}; \alpha)$
- Agent values high payoffs in high value of information states

One-time signals

Value of a one-time signal is sometimes more relevant

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q(z_{t+1}|z_t)^{\gamma-1} e^{(1-\gamma) \left[\rho v(z_{t+1};\alpha_0) + \omega(z_{t+1};\alpha)\right]} \overline{p}_{\alpha}(z_{t+1}|z_t, s_t) \right\}^{\frac{1}{\gamma}}$$

Psychic vs. instrumental values of information

Estimation

Theory

0000000000000

- We define the psychic value of information structure α as the fraction of wealth Ω^P the agent is willing to give up to obtain the same stream of signals considered above
 - \blacktriangleright But she is not allowed to change her consumption-investment plan relative to the uninformed α_0 benchmark case

Robustness

Entropy and RE

Conclusion

- Instead the only benefit from the signals comes from early resolution of uncertainty
- The instrumental value of information is the fraction of wealth Ω^I that an agent who acquired the stream of signals is willing to give up to be able to optimize her consumption-investment plan according to the signals
- Total value of information is approximately the sum of the psychic and instrumental values

$$\omega = \omega^P + \omega^I \tag{2}$$

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE
 Conclusion

 0000000000
 000000
 000000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <t

Private vs. public information

Value of public information is attained by a small tweak

$$E\left[e^{(\gamma-1)\left[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)\right]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t, s_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- The key difference between the private and public cases is that in the private case the agent can use the information before market prices react
- Psychic value of public information is identical to the private information case
- Instrumental value of public information can differ substantially from the private information counterpart
 - Intuitively, no instrumental value if price adjustments offset the potential gains from improved investment returns

Entropy and RE 00 Conclusion 0

Social vs. private value of information

- The psychic value is a pure gain in social welfare as opposed to a transfer among agents
- The instrumental value of private information constitutes a transfer from other investors in an exchange economy
 - A social value could arise from improved capital allocation to production Ai (2007 WP)

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- \blacktriangleright Take the parameters $\beta,~\gamma,$ and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- ▶ Condition moments on information release dates to estimate their associated value of information, e.g. $\omega(z_t; \text{GDP})$

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q(z_{t+1}|z_t)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v(z_{t+1}; \alpha_0) + \omega(z_{t+1}; \alpha)\right]} p_\alpha(z_{t+1}|z_t, s_t) \right\}^{\frac{1}{\gamma}}$$

- \blacktriangleright Take the parameters β , γ , and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- ▶ Condition moments on information release dates to estimate their associated value of information, e.g. $\omega(z_t; \text{GDP})$

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- Take the parameters β , γ , and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- ▶ Condition moments on information release dates to estimate their associated value of information, e.g. $\omega(z_t; \text{GDP})$

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- \blacktriangleright Take the parameters β , γ , and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- ▶ Condition moments on information release dates to estimate their associated value of information, e.g. $\omega(z_t; \text{GDP})$

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- \blacktriangleright Take the parameters β , γ , and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- Condition moments on information release dates to estimate their associated value of information, e.g. $\omega(z_t; \text{GDP})$

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	•00000	0000000	000	00	0

▶ FOC for the agent's problem + some algebra yield:

$$E\left[e^{(\gamma-1)[\rho v(z_t;\alpha_0)+\omega(z_t;\alpha)]}\left\{1-\beta+\beta^{\frac{1}{\rho}}\Gamma\left(z_t,s_t;\alpha\right)^{\frac{\gamma(1-\rho)}{\rho(1-\gamma)}}\right\}^{\frac{\rho(1-\gamma)}{1-\rho}}-1|z_t\right]=0$$

$$\Gamma(z_t, s_t; \alpha) \equiv \sum_{z_{t+1}} \left\{ q\left(z_{t+1} | z_t\right)^{\gamma - 1} e^{(1 - \gamma) \left[\rho v\left(z_{t+1}; \alpha_0\right) + \omega\left(z_{t+1}; \alpha\right)\right]} p_\alpha\left(z_{t+1} | z_t, s_t\right) \right\}^{\frac{1}{\gamma}}$$

- \blacktriangleright Take the parameters β , γ , and ρ as given
- Estimate discrete state prices from SPX options
- Estimate physical prior/posterior probabilities using parametric recovery (γ exponential tilting)
- Estimate the uninformed log-value-to-consumption ratios by solving a well-known fixed point problem
- ► Condition moments on information release dates to estimate their associated value of information, e.g. ω (z_t; GDP)

Implied volatility surface

December 4, 1998 Employment Report

log moneyness (K/S) by term (τ)

Recovering the physical probability matrix

Estimation

000000

Theory

 Physical probabilities p_{ijt} are related to state prices q_{ijt} by a stochastic discount factor m_{ijt}

$$q_{ijt} = m_{ijt} p_{ijt} \tag{3}$$

Entropy and RE

Conclusion

We assume that physical probabilities at each time t are an exponentially-tilted version of state prices

$$p_{ijt} = \frac{e^{\epsilon r_p(z_{t+1}=j|z_t=i)}q_{ijt}}{\sum_k e^{\epsilon r_p(z_{t+1}=k|z_t=i)}q_{ikt}}$$
(4)

Robustness

- Securities paying in good states with high returns are relatively cheap, with the size of the wedge determined by risk aversion e
- Calibrate $\epsilon = 1.5$ to match equity premium over our sample
- Commonly used in empirical options studies (e.g. Bakshi, Kapadia, and Madan, 2003; Bliss and Panigirtzoglou, 2004)

IntroTheoryEstimationResultsRobustnessEntropy and REConclusion00

Prior and posterior risk-neutral and physical probabilities December 4, 1998 Employment Report

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	00000000000	0000●0	0000000	000	00	O
Data						

- Daily option prices from OptionMetrics, January 4, 1996 to August 31, 2015
- Commonly-used filters:
 - Restrict attention to at or out of the money calls and puts
 - At least seven days to maturity
 - Strictly positive volume
- Macroeconomic indicators release dates from Bloomberg's Economic Calendar

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	0000000000	00000	0000000	000	00	0

Informational events

Event	Source	Obs.
Consumer Comfort	Bloomberg	489
Employment	Bureau of Labor Statistics	194
FOMC Decision	Fed	131
GDP	Bureau of Economic Analysis	197
Jobless Claims	U.S. Department of Labor	804
Mortgage Applications	Mortgage Bankers' Association	481

Benchmark parameters

- Our benchmark parameters focus on parameters commonly used in the asset pricing literature:
 - time discount rate $\beta = 0.998$
 - relative risk aversion $\gamma = 10$
 - elasticity of intertemporal substitution $1/\rho=1.5$
 - monthly horizon $\tau = 1/12$

 Bansal-Yaron (2004 JF) and subsequent literature calibrate these parameters to match key asset pricing moments such as the equity premium and volatility of the risk free rate IntroTheoryEstimationResultsRobustnessEntropy and REConclusion00000000000000000000000000000000

Estimated value of private information

Tbl 2: Willing to pay between 4 and 15 basis points of wealth for a one-time peek into the informational content of these leading macroeconomic indicators

	RRA = 10, EIS = 1.5			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	0.039 0.054 0.035 0.038 0.034 0.043 0.035	(0.003) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003)	0.039 0.053 0.030 0.037 0.034 0.043 0.034	0.034 0.061 0.037 0.032 0.033 0.041 0.034	(0.004) (0.007) (0.007) (0.005) (0.004) (0.003) (0.003)	0.033 0.060 0.030 0.032 0.033 0.040 0.032	0.417 0.565 0.341 0.406 0.364 0.445 0.357	(0.040) (0.052) (0.045) (0.046) (0.035) (0.030) (0.030)	0.413 0.554 0.283 0.395 0.360 0.441 0.346	574 207 133 134 206 887 570

Panel A: One-time Signal

									574 207 133 134 206 887 570	

Estimated value of private information

Tbl 2: Willing to pay between 4 and 15 basis points of wealth for a one-time peek into the informational content of these leading macroeconomic indicators

	$RRA=10,\ EIS=1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	0.039 0.054 0.035 0.038 0.034 0.043 0.035	(0.003) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003)	0.039 0.053 0.030 0.037 0.034 0.043 0.034	0.034 0.061 0.037 0.032 0.033 0.041 0.034	(0.004) (0.007) (0.007) (0.005) (0.004) (0.003) (0.003)	0.033 0.060 0.030 0.032 0.033 0.040 0.032	0.417 0.565 0.341 0.406 0.364 0.445 0.357	(0.040) (0.052) (0.045) (0.046) (0.035) (0.030) (0.030)	0.413 0.554 0.283 0.395 0.360 0.441 0.346	574 207 133 134 206 887 570

Panel A: One-time Signal

	$RRA=10,\ EIS=1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	14.13 23.37 14.64 15.41 14.44 17.69 12.52	$\begin{array}{c}(1.22)\\(2.01)\\(0.05)\\(0.66)\\(0.95)\\(1.17)\\(0.93)\end{array}$	13.57 21.73 12.12 14.48 13.82 16.84 11.78	7.90 12.38 7.42 7.03 7.02 8.59 7.90	(0.76) (1.12) (0.22) (1.22) (0.66) (0.53) (0.76)	7.87 12.83 6.15 7.21 7.18 8.82 7.86	78.19 86.47 69.76 75.43 71.55 78.70 72.69	$\begin{array}{c} (0.12) \\ (0.02) \\ (0.00) \\ (0.03) \\ (0.01) \\ (0.05) \\ (0.10) \end{array}$	77.99 85.98 62.57 74.27 71.18 78.38 71.41	574 207 133 134 206 887 570

Psychic vs. instrumental value of private information

Tbl 3: Values of some one-time signals derives mostly from instrumental value as they improve agent's consumption-investment plan, while for others psychic value dominates

Event	$\Omega = 1 - e^{-\omega}$	$\omega=\omega^P+\omega^I$	ω^P	ω^{I}	$ \omega^P / \omega $	$ \omega^I / \omega $	Obs
All	0.043	0.043	0.000	0.043	0.000	100.000	4575
Consumer Comf.	0.039	0.039	0.000	0.039	0.014	99.986	574
Employment	0.054	0.054	-0.000	0.054	0.002	100.002	206
FOMC	0.035	0.035	0.000	0.035	0.006	99.994	130
Pre-FOMC	0.038	0.038	-0.000	0.038	0.004	100.004	131
GDP	0.034	0.034	0.000	0.034	0.014	99.986	202
Jobless Claims	0.043	0.043	0.000	0.043	0.021	99.979	875
Mortgage App.	0.035	0.035	-0.000	0.035	0.010	100.010	570

Panel A: One-time Signal

			4575 574 206 130 131 202 875 570

Psychic vs. instrumental value of private information

Tbl 3: Values of some one-time signals derives mostly from instrumental value as they improve agent's consumption-investment plan, while for others psychic value dominates

Event	$\Omega = 1 - e^{-\omega}$	$\omega=\omega^P+\omega^I$	ω^P	ω^{I}	$ \omega^P / \omega $	$ \omega^I / \omega $	Obs
All	0.043	0.043	0.000	0.043	0.000	100.000	4575
Consumer Comf.	0.039	0.039	0.000	0.039	0.014	99.986	574
Employment	0.054	0.054	-0.000	0.054	0.002	100.002	206
FOMC	0.035	0.035	0.000	0.035	0.006	99.994	130
Pre-FOMC	0.038	0.038	-0.000	0.038	0.004	100.004	131
GDP	0.034	0.034	0.000	0.034	0.014	99.986	202
Jobless Claims	0.043	0.043	0.000	0.043	0.021	99.979	875
Mortgage App.	0.035	0.035	-0.000	0.035	0.010	100.010	570

Panel A: One-time Signal

Event	$\Omega = 1 - e^{-\omega}$	$\omega=\omega^P+\omega^I$	ω^P	ω^{I}	$ \omega^P / \omega $	$ \omega^I / \omega $	Obs
All	18.794	20.818	-0.005	20.823	0.024	100.024	4575
Consumer Comf.	14.129	15.233	-0.002	15.234	0.011	100.011	574
Employment	23.368	26.616	0.007	26.608	0.028	99.972	206
FOMC	14.636	15.824	0.005	15.819	0.034	99.966	130
Pre-FOMC	15.415	16.741	-0.006	16.747	0.034	100.034	131
GDP	14.435	15.590	0.002	15.588	0.012	99.988	202
Jobless Claims	17.689	19.467	-0.000	19.467	0.002	100.002	875
Mortgage App.	12.523	13.379	-0.004	13.383		100.032	570

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
00000000	00000000000	000000	0000000	000	00	0

Comparative statics I

Fig 4: One-time signal of jobless claims

(a) Relative risk aversion $\gamma = \rho$

(b) Relative risk aversion γ

- Investment-relevant information is less useful to a more risk averse agent because her willingness to change her portfolio to take into account the information is limited
- Risk aversion effect weakens when EIS is held fixed
 - Counter effect of stronger preference for early resolution of uncertainty

Comparative statics II

Fig 4: One-time signal of jobless claims

(a) Elasticity of intertemporal substitution $1/\rho$

(b) Time discount factor β

- Higher EIS makes agent more willing to use information to increase future consumption
- When the time discount factor β increases the value of information increases because the agent attaches more value to future periods

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusion
0000000	00000000000	000000	0000000	000	00	0

Comparative statics III

Fig 4: One-time signal of jobless claims

(a) Horizon in years au

- By shrinking the horizon we better capture the value of information to a more active trader
- Shorter maturity options are less sensitive to the macro announcements, and therefore the value of information is mostly increasing on net in the investment horizon

IntroTheoryEstimationResultsRobustnessEntropy and REConclusion0000000000000000000000000000000

Estimated value of *public* information

Tbl 4: As expected, values of public information are uniformly smaller than private values of information reported above

	$RRA = 10, \ EIS = 1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	0.000 0.002 0.005 -0.002 0.001 -0.000 -0.001	$\begin{array}{c} (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \end{array}$	0.000 0.001 -0.000 -0.003 0.000 -0.001 -0.002	0.000 0.003 0.007 -0.002 0.000 -0.001 0.000	$\begin{array}{c} (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \end{array}$	-0.001 0.002 -0.000 -0.002 -0.000 -0.002 -0.001	0.010 0.032 0.068 -0.019 0.011 0.004 0.004	$\begin{array}{c}(0.003)\\(0.004)\\(0.006)\\(0.004)\\(0.001)\\(0.004)\\(0.004)\\(0.004)\end{array}$	0.007 0.021 0.009 -0.030 0.007 -0.000 -0.008	574 207 133 134 206 887 570

Panel A: One-time Signal

									574 207 133 134 206 887 570	

IntroTheoryEstimationResultsRobustnessEntropy and REConclusion0000000000000000000000000000000

Estimated value of *public* information

Tbl 4: As expected, values of public information are uniformly smaller than private values of information reported above

	RRA = 10, EIS = 1.5			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	0.000 0.002 0.005 -0.002 0.001 -0.000 -0.001	$\begin{array}{c} (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \end{array}$	0.000 0.001 -0.000 -0.003 0.000 -0.001 -0.002	0.000 0.003 0.007 -0.002 0.000 -0.001 0.000	$\begin{array}{c} (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \\ (0.000) \end{array}$	-0.001 0.002 -0.000 -0.002 -0.000 -0.002 -0.001	0.010 0.032 0.068 -0.019 0.011 0.004 0.004	$\begin{array}{c}(0.003)\\(0.004)\\(0.006)\\(0.004)\\(0.001)\\(0.004)\\(0.004)\end{array}$	0.007 0.021 0.009 -0.030 0.007 -0.000 -0.008	574 207 133 134 206 887 570

Panel A: One-time Signal

	RRA	$RRA = 10, \ EIS = 1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS		
Event	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Ω	$se(\Omega)$	$\tilde{\Omega}$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims Mortgage App.	0.12 0.94 1.92 -0.75 0.23 -0.28 -0.28	(0.06) (0.10) (0.03) (0.05) (0.01) (0.08) (0.07)	0.01 0.43 -0.35 -1.24 0.08 -0.44 -0.72	-0.02 0.53 1.13 -0.39 -0.02 -0.44 -0.00	$\begin{array}{c} (0.07) \\ (0.04) \\ (0.02) \\ (0.01) \\ (0.01) \\ (0.06) \\ (0.07) \end{array}$	-0.37 0.21 -0.45 -0.45 -0.10 -0.58 -0.37	2.24 6.55 12.66 -4.58 1.02 -1.09 -1.17	$\begin{array}{c}(0.66)\\(0.52)\\(0.10)\\(0.38)\\(0.30)\\(1.02)\\(1.24)\end{array}$	1.14 2.60 -8.33 -8.49 -0.40 -2.53 -5.81	574 207 133 134 206 887 570

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusi
00000000	00000000000	000000	0000000	•00	00	0

Relaxing rational expectations: private information

Tbl 6: Omitting restrictions that recovered probabilities are rational leaves point estimates unchanged, but standard errors are larger

	$RRA = 10, \ EIS = 1.5$			RRA	RRA = 10 = 1/EIS			RRA = 1 = 1/EIS		
Event	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Obs
Consumer Comf. Employment FOMC Pre-FOMC GDP Jobless Claims	0.039 0.053 0.039 0.042 0.034 0.043	$\begin{array}{c} (0.003) \\ (0.005) \\ (0.006) \\ (0.009) \\ (0.003) \\ (0.003) \\ (0.003) \end{array}$	0.351 1.000 1.000 1.000 1.000 0.001	0.035 0.059 0.042 0.034 0.033 0.042	$\begin{array}{c} (0.004) \\ (0.007) \\ (0.009) \\ (0.006) \\ (0.004) \\ (0.003) \\ (0.004) \end{array}$	0.998 1.000 1.000 1.000 1.000 0.318	0.405 0.540 0.355 0.466 0.349 0.441	(0.042) (0.053) (0.053) (0.107) (0.034) (0.031)	0.350 1.000 1.000 1.000 1.000 0.001	574 207 133 134 206 887

Panel A: One-time Signal

								0.44		

Intro	Theory	Estimation	Results	Robustness	Entropy and RE	Conclusi
0000000	00000000000	000000	0000000	•00	00	0

Relaxing rational expectations: private information

Tbl 6: Omitting restrictions that recovered probabilities are rational leaves point estimates unchanged, but standard errors are larger

	$RRA = 10, \ EIS = 1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Obs
Consumer Comf.	0.039	(0.003)	0.351	0.035	(0.004)	0.998	0.405	(0.042)	0.350	574
Employment	0.053	(0.005)	1.000	0.059	(0.007)	1.000	0.540	(0.053)	1.000	207
FOMC	0.039	(0.006)	1.000	0.042	(0.009)	1.000	0.355	(0.053)	1.000	133
Pre-FOMC	0.042	(0.009)	1.000	0.034	(0.006)	1.000	0.466	(0.107)	1.000	134
GDP	0.034	(0.003)	1.000	0.033	(0.004)	1.000	0.349	(0.034)	1.000	206
Jobless Claims	0.043	(0.003)	0.001	0.042	(0.003)	0.318	0.441	(0.031)	0.001	887
Mortgage App.	0.037	(0.003)	0.449	0.035	(0.004)	0.994	0.368	(0.032)	0.443	570

Panel A: One-time Signal

	$RRA=10,\ EIS=1.5$			RRA = 10 = 1/EIS			RRA = 1 = 1/EIS			
Event	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Ω	$se(\Omega)$	$p\left(\chi^2\right)$	Obs
Consumer Comf.	13.95	(1.24)	0.35	8.27	(0.77)	0.99	77.56	(3.30)	0.35	574
Employment	22.93	(2.61)	1.00	12.13	(1.08)	1.00	85.82	(2.49)	1.00	207
FOMC	16.21	(2.65)	1.00	8.68	(1.70)	1.00	74.36	(4.99)	1.00	133
Pre-FOMC	17.14	(3.35)	1.00	7.42	(1.39)	1.00	79.41	(6.99)	1.00	134
GDP	14.29	(1.69)	1.00	7.10	(0.69)	1.00	70.88	(3.49)	1.00	206
Jobless Claims	17.89	(1.20)	0.00	8.92	(0.53)	0.32	78.90	(2.18)	0.00	887
Mortgage App.	13.09	(0.97)	0.45	8.27	(0.77)	0.99	74.36	(2.70)	0.44	570

IntroTheoryEstimation00000000000000000000000

Results

Robustness

Entropy and RE

Conclusior 0

Modifying the empirical design I

Fig 5: One-time signal of jobless claims

(b) State spacing, dk

Theory 000 000000000

Intro

Estimation 00000 000000

n Results 00000 Robustness 000

ness

Entropy and RE 00 Conclusion O

Modifying the empirical design II

Fig 5: One-time signal of jobless claims

► For intuition, consider the simpler case of log utility:

Theory

Robustness

Entropy and RE

Conclusion

Belief errors covariance with continuation value/cosumption ratios

- If one assumes (we do not) rational expectations (law of total probability) then last two terms drop out
 - Turns out to be empirically important

► For intuition, consider the simpler case of log utility:

Theory

Robustness

Entropy and RE

Belief errors covariance with continuation value/cosumption ratios

- If one assumes (we do not) rational expectations (law of total probability) then last two terms drop out
 - Turns out to be empirically important

► For intuition, consider the simpler case of log utility:

Theory

Robustness

Entropy and RE

Belief errors covariance with continuation value/cosumption ratios

- If one assumes (we do not) rational expectations (law of total probability) then last two terms drop out
 - Turns out to be empirically important

► For intuition, consider the simpler case of log utility:

Estimation

Theory

$$\begin{split} \omega\left(z_{t};\alpha\right) &= \beta \underbrace{\sum_{s_{t}} \alpha\left(s_{t}|z_{t}\right)\left[H\left(z_{t};\alpha_{0}\right) - H\left(z_{t},s_{t};\alpha\right)\right]}_{\text{Expected reduction in entropy (uncertainty of p)}} + \beta \underbrace{\sum_{z_{t+1}} \omega\left(z_{t+1};\alpha\right)p\left(z_{t+1}|z_{t}\right)}_{\text{Present value of future signals}} \\ &+ \beta \underbrace{\sum_{z_{t+1}} \left[\sum_{s_{t}} \alpha\left(s_{t}|z_{t}\right)p\left(z_{t+1}|z_{t},s_{t}\right) - p\left(z_{t+1}|z_{t}\right)\right]r\left(z_{t+1}|z_{t}\right)}_{\text{Belief errors covariance with log returns}} \\ &+ \beta \underbrace{\sum_{z_{t+1}} \left[\sum_{s_{t}} \alpha\left(s_{t}|z_{t}\right)p\left(z_{t+1}|z_{t},s_{t}\right) - p\left(z_{t+1}|z_{t}\right)\right]v\left(z_{t+1};\alpha_{0}\right)}_{\text{V}} \right] \end{split}$$

Robustness

Entropy and RE

Conclusion

Belief errors covariance with continuation value/cosumption ratios

- If one assumes (we do not) rational expectations (law of total probability) then last two terms drop out
 - Turns out to be empirically important

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE
 Conclusion

 00000000
 0000000
 000000
 000
 00
 0
 0
 0

The role of rational expectations

Tbl 4: Ordering changes considerably once we allow for deviations from rational expectations (law of total probability for option-implied distributions)

	0					
Event	$\Omega = 1 - e^{-\omega}$	$\omega=\omega^p+\omega^q+\omega^v$	ω^p	ω^q	ω^v	Obs
Consumer Comf.	0.417	0.417	-0.070	0.487	0.000	574
Employment	0.565	0.567	0.479	0.088	-0.000	207
FOMC	0.341	0.342	0.211	0.131	-0.000	133
Pre-FOMC	0.406	0.407	0.233	0.173	0.000	134
GDP	0.364	0.365	0.124	0.241	-0.000	206
Jobless Claims	0.445	0.446	-0.062	0.509	0.000	887
Mortgage App.	0.357	0.358	0.057	0.301	0.000	570

Panel A: One-time Signal

			574 207 133 134 206 887 570

 Intro
 Theory
 Estimation
 Results
 Robustness
 Entropy and RE
 Conclusion

 00000000
 0000000
 000000
 000
 00
 0
 0
 0

The role of rational expectations

Tbl 4: Ordering changes considerably once we allow for deviations from rational expectations (law of total probability for option-implied distributions)

	<u> </u>					
Event	$\Omega = 1 - e^{-\omega}$	$\omega = \omega^p + \omega^q + \omega^v$	ω^p	ω^q	ω^v	Obs
Consumer Comf.	0.417	0.417	-0.070	0.487	0.000	574
Employment	0.565	0.567	0.479	0.088	-0.000	207
FOMC	0.341	0.342	0.211	0.131	-0.000	133
Pre-FOMC	0.406	0.407	0.233	0.173	0.000	134
GDP	0.364	0.365	0.124	0.241	-0.000	206
Jobless Claims	0.445	0.446	-0.062	0.509	0.000	887
Mortgage App.	0.357	0.358	0.057	0.301	0.000	570

Panel A: One-time Signal

Event	$\Omega = 1 - e^{-\omega}$	$\omega = \omega^p + \omega^q + \omega^v$	ω^p	ω^q	ω^v	Obs
Consumer Comf.	78.19	152.28	-36.47	188.77	-0.02	574
Employment	86.47	200.04	172.32	27.69	0.02	207
FOMC	69.76	119.59	82.19	37.46	-0.06	133
Pre-FOMC	75.43	140.35	105.83	34.47	0.06	134
GDP	71.55	125.70	36.20	89.52	-0.02	206
Jobless Claims	78.70	154.64	-39.83	194.51	-0.04	887
Mortgage App.	72.69	129.78	36.52	93.26	-0.00	570

- We derive an expression for the value of information to an investor in a dynamic environment with recursive utility
- We estimate the value of key macroeconomic indicators from changes in index option prices
 - One-time signal vs. signal every period
 - Psychic vs. instrumental values
 - Private vs. public information
- Comparative statics are rather intuitive
- Future research may use our methodology to study the value of information at the firm level (M&A, earnings, etc.)

Appendix •0000

Estimation: employment example

- Employment reported on the first Friday of each month
- We estimate state prices at market close of preceding Thursday (date t)
- ► We estimate physical probabilities on preceding Thursday (date t) and at market close of release Friday (date t + dt)
- ▶ We consider the information structure just before the information release as α_0 and the one just after the information release as α
- Applying GMM we estimate the value of information $\omega_i(\alpha)$ for each state i = 1, ..., n.

Appendix 00000

Estimation: state space and state prices

- ▶ Following Ross (2015), on each date *t* we discretize the state relative to the current spot price of SPX into 11 possible equally spaced log-returns in [-0.24, 0.24]
- We focus on a one-month horizon
- Thought exercise: How much would you be willing to pay for obtaining an information source early on a monthly basis?
- ► A state price q (z'|z) corresponds to the price of a security paying \$1 if state z' is realized in one month given that the current state is z
- We calculate state prices from S&P 500 options using the Breeden & Litzenberger (1978) method by estimating the implied volatility surface using the Carr and Wu (2010) method

Event summary statistics

Ordering changes considerably once we allow for deviations from rational expectations (law of total probability for option-implied distributions)

	Levels on event day			Changes from previous day					
Event	$E[r^e]$	$\sigma[r^e]$	SR	H^p	$\Delta E[r^e]$	$\Delta \sigma[r^e]$	ΔSR	ΔH^p	Obs
All	5.93 (0.07)	19.89 (0.09)	26.69 (0.16)	149.50 (0.41)	0.00 (0.02)	-0.00 (0.02)	0.02 (0.05)	0.00 (0.08)	4931
Consumer Comf.	5.43 (0.24)	18.34 (0.27)	25.36 (0.51)	140.13 (1.24)	-0.06 (0.05)	-0.07 (0.05)	-0.39 (0.13)	-0.25 (0.23)	606
Employment	`5.96´ (0.34)	19.83 (0.43)	26.61 (0.78)	149.00 (2.04)	-0.30 (0.08)	-0.25 (0.09)	-1.16 (0.26)	-1.19 (0.41)	219
FOMC	6.11 (0.44)	19.94 (0.50)	27.47 (0.97)	149.63 (2.37)	-0.33 (0.13)	-0.60 (0.10)	-0.61 (0.30)	-2.76 (0.44)	147
Pre-FOMC	6.44 (0.45)	20.55 (0.52)	28.06 (1.00)	152.38 (2.40)	0.19 (0.16)	0.08 (0.10)	0.82 (0.36)	0.21 (0.43)	147
GDP	5.84 (0.33)	19.97 (0.41)	26.20 (0.73)	149.75 (1.93)	-0.11 (0.08)	-0.13 (0.07)	-0.29 (0.22)	-0.61 (0.33)	222
Jobless Claims	6.14 (0.17)	19.94 (0.20)	27.48 (0.38)	149.50 (0.95)	0.00 (0.04)	-0.05 (0.04)	-0.02 (0.11)	-0.18 (0.18)	948
Mortgage App.	5.51 (0.24)	18.31 (0.28)	25.86 (0.51)	139.75 (1.27)	0.07 (0.05)	-0.15 (0.05)	0.45 (0.13)	-0.89 (0.22)	601
Historical	6.00 (0.28)	19.49 (0.20)	30.81 (22.61)						4931

Appendix 00000

Relation to entropy

- Cabrales, Gossner, and Serrano (2013 AER) focus on a log utility agent, faced with a static investment problem
- The value of information in that case equals the mean reduction in entropy that the information source can generate

$$I^{p}(z;\alpha) \equiv \sum_{s} \left[H(z;\alpha_{0}) - H(z,s;\alpha) \right] \alpha(s|z)$$

Appendix 00000

Relation to entropy

Denote

$$H(z,s;\alpha) \equiv -\sum_{z'} p(z'|z,s) \log p(z'|z,s)$$

the entropy of the future state z^\prime distribution given the current state z and signal s

- ► Similarly, $H(z; \alpha_0) \equiv -\sum_{z'} p(z'|z) \log p(z'|z)$ is the unconditional entropy in state z
- Entropy is a measure of the dispersion of the probability distribution
- ► H (z, α₀) H (z, s; α), the reduction in entropy associated with signal s, is a measure of the information in this signal