Intro 00000 Model

Equilibrium 0000000000 Policy & Extensions

Conclusion 0

Information Acquisition in Rumor-Based Bank Runs

Zhiguo He University of Chicago and NBER

Asaf Manela Washington University in St. Louis

Intro	Model	Equilibrium
0000	000	0000000

Conclusion 0

Bank Runs on WaMu in 2008

WaMu Deposits, 7/14/2008 - 10/6/2008, \$ Billions

Intro	Model	Equilibrium	Policy & Extensions
00000	000	000000000	0000

Stylized Features of Bank Runs in Modern Age

Stylized features of Wamu bank runs:

- First run July 2008, lasting about 20 days. Rumor is spreading online, but never made public
- Wamu survived the first run, followed by deposit inflows
- In the second fatal run in September 2008, uncertainty about bank liquidity played a key role
- Deposit withdrawals are gradual
- Worried depositors (even covered by FDIC insurance) scramble for information; then some withdrew immediately while others wait
- Same empirical features in recent runs on shadow banks (ABCP runs in 2007, European Debt Crisis in 2011)

Conclusion O

Overview of the Result

Intro

00000

- A dynamic bank run model with endogenous information acquisition about liquidity
 - rumor: signal about bank liquidity lacking a discernible source
 - additional information acquisition upon hearing the rumor
- We emphasize the role of acquiring informative but noisy information
 - Without information acquisition, either there is no run, or in run equilibrium depositors never wait (i.e. withdraw immediately) upon hearing the rumor
 - With information acquisition, in bank run equilibrium depositors with medium signal withdraw after an endogenous amount of time

Overview of the Result

Model

Intro

00000

- Information acquisition about liquidity may lead to bank run equilibrium thus inefficient
 - ► Suppose without information acquisition bank run equilibrium does not exist⇒ depositors never withdraw
 - With information acquisition, medium-signal depositors worry about some depositors who get bad signal and runs immediately
 - This "fear-of-bad-signal-agents" pushes medium-signal agents to withdraw after certain endogenous time
- Public information provision can crowd out inefficient private information acquisition

Intro 0000 Model

Equilibrium 0000000000 Policy & Extensions

Conclusion 0

Related Literature

- Diamond and Dybvig (1983), Chari and Jagannathan (1988), Goldstein and Pauzner (2005), Ennis and Keister (2008), Nikitin and Smith (2008), etc
- ▶ Green and Lin (2003), Peck and Shell (2003), Gu (2011), etc
- ► He and Xiong (2012), Achaya, Gale, and Yorulmazer (2011), Martin, Skeie, and von Thadden (2011) etc
- Abreu and Brunnermeier (2002, 2003)

itro	Model
0000	•00

Conclusion

Bank Deposits

- Infinitely lived risk-neutral depositors with measure 1
- Bank deposits grow at a positive rate r, while cash under the mattress yields zero
 - r can be broadly interpreted as a convenience yield
 - to ensure bounded values, bank assets mature at Poisson event with rate δ
- **b** Bank is solvent, but fails if $\tilde{\kappa}$ measure of depositors withdraw
 - we introduce uncertainty in $\tilde{\kappa}$ to capture uncertain bank liquidity
- If bank fails, each dollar inside the bank recovers $\gamma \in (0, 1)$

Model
000

Equilibrium

Policy & Extensions

Conclusion O

Liquidity Event and Spreading Rumors

- ► Liquidity event hits at an unobservable random time \tilde{t}_0 exponentially distributed: $\phi(t_0) = \theta e^{-\theta t_0}$
 - 2007/08 crisis, banks have opaque exposure to MBS and hit by adverse shocks of real estate
- Bank may become illiquid and a *rumor* starts spreading:
 - "the liquidity event t
 ₀ has occurred so the bank might be illiquid;" but nobody knows the exact time of t
 ₀

rumor: unverified info of uncertain origin that spreads gradually

Model
000

Equilibrium 0000000000 Policy & Extensions

Conclusion O

Uncertainty about Bank Liquidity

- Bank initially liquid, but may become illiquid after \tilde{t}_0
 - Uninformed agents not running the bank (verified later)
- Bank liquidity $\tilde{\kappa}$ can take two values:

• $\kappa_H < 1$ but sufficiently high to rule out rumor-based runs • Once revealed to be liquid, agents *redeposit* their funds Model 000 Equilibrium •000000000 Policy & Extensions

Conclusion O

Learning and Withdrawal

- Agent t_i 's information set at t: $\mathcal{F}_t^{t_i} = \left\{ t_i, t, \tilde{y}_{t_i}, \mathbf{1}_t^{BF} \right\}$
 - ▶ $\mathbf{1}_{t}^{BF}$ is bank failure indicator, \tilde{y}_{t_i} is agent specific signal
- $\tau = t t_i$, ζ : equilibrium survival time of illiquid bank
- Failure hazard rate $h(\tau) = \Pr(fail \ at [\tau, \tau + dt] | \text{survive at } \tau)$

Proposition. Given survival time ζ, threshold strategy, i.e. withdraw after τ_w, is optimal.

Mode
000

Equilibrium 000000000 Policy & Extensions

Conclusion O

Individual Optimality: When to Withdraw?

- Withdrawal decision trades-off bank failure vs growth
- Optimal withdrawal time $\tau_w \ge 0$ satisfies FOC:

► Given conjectured bank survival time ζ, the above FOC only depends on ζ − τ_w:

$$g\left(\zeta - \tau_w\right) = 0$$

- If ζ goes up by Δ, τ_w goes up by Δ: if banks survive longer, why don't I wait longer?
- Stationarity: my extra waiting time is exactly the incresed bank survival time

Model

Equilibrium 000000000 Policy & Extensions

Aggregate Withdrawal Condition

 Failure occurs when aggregate withdrawals reach the illiquid bank's capacity:

$$\int_{t_0}^{t_0+\zeta-\tau_w} \beta e^{-\beta(t_i-t_0)} dt_i = 1 - e^{-\beta(\zeta-\tau_w)} = \kappa_L.$$

- \blacktriangleright Again, as in individual optimality condition, the aggregate withdrawal condition only depends on $\zeta-\tau_w$
- Except in knife-edge cases, "aggregate withdrawal" and "individual optimality" conditions have different solutions for $\zeta-\tau_w$
- It has important implications for bank run equilibrium without information acquisition

No Endogenous Waiting in Bank Runs

- \blacktriangleright Generically, either bank runs never occur, or bank runs occur without waiting so $\tau_w=0$
 - Suppose the conjectured bank survival time is $\zeta.$ Aggregate withdrawal condition gives $\zeta-\tau_w$
 - Suppose individual optimality condition $g(\zeta \tau_w) > 0$ so that every agent postpones withdrawal. Say $\tau_w + \Delta$ is optimal
 - Aggregate withdrawal condition says the new survival time becomes $\zeta + \Delta!$
 - ▶ Then the individual optimality condition says agents should wait $\tau_w + 2\Delta$, and so on so forth...
 - In equilibrium, no bank run occurs
 - ▶ If $g(\zeta \tau_w) < 0$, then bank run occurs, but the above argument pushes $\tau_w = 0$

Model 000

Intro

Equilibrium

Policy & Extensions

Conclusion 0

The Model with Information Acquisition

► Each agent, upon hearing the rumor, acquires an additional signal with quality q at some cost x > 0

▶ Pr. q perfect signals $(y_H \text{ or } y_L)$; Pr. 1 - q uninformative (y_M)

Model 000 Equilibrium 0000000000 Policy & Extensions

Conclusion 0

Individually Optimal Withdrawal

- ▶ y_L agents immediately withdraw upon hearing the rumor, y_H agents never withdraw
- y_M agents wait some endogenous time $\tau_w > 0$

ntro	Model	Equilibrium	Policy & Extensions	Conclusion
0000	000	0000000000	0000	0

Modified Aggregate Withdrawal Condition

 Introduction of noisy signals changes the aggregate withdrawal condition

$$q\left(1-e^{-\beta\zeta}\right)+\left(1-q\right)\left(1-e^{-\beta(\zeta-\tau_w)}\right)=\kappa_L$$

► Conditional on illiquid bank, y_L agents are running over [0, ζ] but y_M agents running over [τ_w, ζ]

Bank Run Equilibrium with Waiting

- y_M 's withdrawal decision: bank failure vs. r growth
- Suppose all y_M agents withdraw immediately ($au_w = 0$), then
 - few y_L agents have withdrawn, takes longer to fail
 - ▶ longer remaining survival time $\zeta \tau_w$, lower failure hazard
- ▶ When wait longer τ_w ↑, y_M agents know that more and more y_L agents have withdrawn before them
 - shorter remaining survival time $\zeta \tau_w$, higher failure hazard
 - the effect of "fear-of-bad-signal-agents"

Intro	Model	Equilibrium	Policy & Extensions	Conclusion
00000	000	000000000	0000	0

Comparative Statics

- Suppose agent can choose precision q at some convex cost
- What is the impact of rumor spreading rate β and awareness window η on equilibrium outcomes?

- Counter-intuitive: when the awareness window widens and potentially more agents run, the illiquid bank survives longer
- Key The agent who hears the rumor also observes the bank is alive
 - Conditional on the bank surviving this long, the bank is more likely to be liquid

Strategic Substitution vs Strategic Complementarity

- Our model features strategic complementarity between information acquisition
 - Two equilibria: either no-acquisition-no-run, or acquisition-and-run
- Strategic complementarities in bank runs!
- But, we have strategic substitution in information acquisition as well
 - The mere bank survival is a public signal in our dynamic model

Conclusion

- When other agents learn more, bank survival becomes a better information for bank liquidity
- Thus individual agents acquire less information
- This strategic substitution effect is behind the counter-intuitive awareness window result

Intro	Model	Equilibrium	Policy & Extensions
00000	000	000000000	0000

Extension: Insolvent Banks and Stress Tests

- Suppose that bank can also be insolvent
- ▶ Upon hearing the rumor, the agent can spend effort <u>e</u> to know whether the bank is solvent (full revelation)

Conclusion

- Studying solvency inevitably tells us something about liquidity
 - ► the baseline quality of liquidity signals ỹ becomes <u>e</u> by uncovering insolvency
 - ▶ then, agents can further choose $q > \underline{e}$ with cost $\frac{\alpha}{2} \left(q \underline{e}\right)^2$
- A high \underline{e} triggers the bank run equilibrium
 - agents study hard to detect insolvent banks, but also learn something about bank liquidity
 - if others know a lot about liquidity, bank runs are possible and I want to learn more as well

Intro	Model	Equilibrium	Policy & Extensions	Conclusion
00000	000	000000000	0000	0

Policy Implication: Stress Tests

 Public provision of solvency information (lower <u>e</u>) can mitigate bank runs by crowding-out individual depositors' effort to acquire liquidity information

Intro	Model	Equilibrium	Policy & Extensions	Conclusion
00000	000	000000000	0000	0

Extension: Switching between Two Banks

- Often agents move funds from weak banks to stronger ones. Highly inefficient.
 - instead of keeping cash under the mattress (with zero return), the outside option is endogenous
- Suppose we have two banks one of which is illiquid with probability $\frac{1}{2}$
- ► The whole analysis goes through with only *y*_L agents withdrawing

Intro	Model	Equilibrium	Policy & Extensions	Conclusion
00000	000	000000000	0000	0

Policy Implication: Injecting Noise about Solvent Banks

- Injecting noise about solvent banks increases the cost of liquidity information (a higher α) can eliminate the run
- October 13, 2008: Bailout of Big 9 Banks
- Paulson forces strongest banks to participate
- The government was in fact injecting noise about the liquidity of competing solvent banks into the economy

Intro	
00000	

Model 000 Equilibrium 0000000000 Policy & Extensions

Conclusion

- Individuals acquire information about bank liquidity excessively when bank runs are a concern
 - gradual withdrawal and dynamically learning bank liquidity is new to the literature
- Government can play an active role in information policy
- We consider other theoretical issues
 - uninformed agents' problems, what if choosing acquisition timing, etc
- Our dynamic model can be taken to data, when available

Appendix

Nonexistence of DD Pure-Strategy Sunspot Runs

- Interestingly, we can rule out the following Diamond-Dybvig pure-strategy bank runs triggered by sunspot
- Say that all agents, both those have heard the rumor and those have not, coordinate to run on the bank on some arbitrary time T
 - As bank could be illiquid when time elapses, running could be incentive compatible
- \blacktriangleright However, if T>0, every agent would like to preempt and withdraw at $T-\epsilon$
- ► Therefore T = 0. But it is common knowledge that the bank at T = 0 is liquid (so will not fail even if others are running)!
- Of course, equilibria with mixed strategies may exist