Leveraged Funds and the Shadow Cost of Leverage by Zhongjin Lu and Zhongling Qin

Discussant: Asaf Manela Washington University in St. Louis

June 2020

Why do we care?

Measuring the shadow funding cost can educate both asset pricing and financial regulation

Financial frictions for intermediaries matter for asset pricing

- Theory (Brunnermeier-Pedersen 2009 RFS, He-Krishnamurthy 2013 AER; Brunnermeier-Sannikov, 2014 AER)
- Evidence (Adrian-Etula-Muir, 2014 JF; He-Kelly-Manela, 2017 JFE)

Why do we care?

Measuring the shadow funding cost can educate both asset pricing and financial regulation

Financial frictions for intermediaries matter for asset pricing

- Theory (Brunnermeier-Pedersen 2009 RFS, He-Krishnamurthy 2013 AER; Brunnermeier-Sannikov, 2014 AER)
- Evidence (Adrian-Etula-Muir, 2014 JF; He-Kelly-Manela, 2017 JFE)
- Regulatory constraints aim to prevent excessive risk due to government safety net
- Many opinions and theories
- Few empirical estimates
 - Structural estimates for life insurers (Koijen-Yogo, 2015 AER)
 - Loophole approach for banks (Kisin-Manela, 2016 RFS)
 - Loophole approach in IR swaps (Fleckenstein-Longstaff, 2018)

Provides a measure of "shadow cost of leverage constraints"
 Shadow cost ~ Return shortfall of leveraged fund

 Return shortfall of unleveraged fund

Imagines a leveraged fund trading with another intermediary that passes along its leverage costs

Main findings

- 1. Shadow cost increases by 98 bps per year, upon quarter-ends
- 2. Shadow cost positively predicts future BAB returns
 - ▶ BAB portfolios are long low- β_{mkt} and short high- β_{mkt} assets
- 3. Negative correlation between shadow cost and contemporaneous BAB returns
- 4. Exposure to time variation in shadow cost negatively predicts stock returns in the cross section

Contribution

- Leveraged fund-based shadow cost aligns with theory better than TED spread (Frazzini-Pedersen, 2014)
- Koijen-Yogo (2016) and Kisin-Manela (2016) quantify the shadow cost of capital for life insurers and banks, respectively
 - Current measure is more applicable to leveraged equity investors
 - Time-series and cross-sectional pricing tests of leverage constraints in equities

Suggestion 1: Explaining prices with fundamentals

- Claim "price" measure is better than "quantity" measures (Adrian-Etula-Muir, 2014; He-Kelly-Manela, 2017; Boguth-Simutin, 2018; Asness-Frazzini-Gormsen-Pedersen, 2020)
- But macro-finance agenda is to move away from explaining prices with prices (Cochrane, 2017)
- Takeaway from 2008 crisis was that intermediaries and financial frictions matter a lot
- What do we learn from your results about the fundamental constraints on their leverage?

Suggestion 2: Whose constraints?

 Theoretical motivation (Garleanu-Pedersen 2011) Investor maximizes expected utility of consumption s.t. margin constraint

$$\sum_{i} m_{it} \left| \theta_{it} \right| + \eta_{ut} \le 1$$

then shadow cost per asset i is

$$\lambda_t m_{it} = \underbrace{\mu_{it} - r_{ft}}_{\text{Effective risk premium}} - \underbrace{\beta_{it}}_{\text{Consumption risk exposure}} \times \underbrace{\gamma_t}_{\text{Consumption risk premium}}$$

- \blacktriangleright To measure the shadow cost using a spread, one needs two assets with same β_{it} and margin requirements m_{it}
- Big ask!
- Paper actually measures something else

Return shortfall:

$$\alpha_{it} = \underbrace{\delta}_{\text{Leverage}} \times \underbrace{b_{jt}}_{\text{Benchmark return}} - \underbrace{r_{it}}_{\text{Leveraged fund return}}$$

Return shortfall:

$$\alpha_{it} = \underbrace{\delta}_{\text{Leverage}} \times \underbrace{b_{jt}}_{\text{Benchmark return}} - \underbrace{r_{it}}_{\text{Leveraged fund return}}$$

Shadow cost of leverage constraints:

$$\psi_{it} = \frac{\alpha_{it} - \alpha_t^{1x}}{\delta - 1} - r_t^{GCrepo}$$

Return shortfall:

$$\alpha_{it} = \underbrace{\delta}_{\text{Leverage}} \times \underbrace{b_{jt}}_{\text{Benchmark return}} - \underbrace{r_{it}}_{\text{Leveraged fund return}}$$

Shadow cost of leverage constraints:

$$\psi_{it} = \frac{\alpha_{it} - \alpha_t^{1x}}{\delta - 1} - r_t^{GCrepo} = b_{jt} - r_t^{GCrepo} - \frac{1}{\delta - 1} \left(r_{it} - r_{it}^{1x} \right)$$

Return shortfall:

$$\alpha_{it} = \underbrace{\delta}_{\text{Leverage}} \times \underbrace{b_{jt}}_{\text{Benchmark return}} - \underbrace{r_{it}}_{\text{Leveraged fund return}}$$

Shadow cost of leverage constraints:

$$\psi_{it} = \frac{\alpha_{it} - \alpha_t^{1x}}{\delta - 1} - r_t^{GCrepo} = b_{jt} - r_t^{GCrepo} - \frac{1}{\delta - 1} \left(r_{it} - r_{it}^{1x} \right)$$

• Muddies the measure and can be dominated by $b_{jt} - r_t^{GCrepo}$

Return shortfall:

$$\alpha_{it} = \underbrace{\delta}_{\text{Leverage}} \times \underbrace{b_{jt}}_{\text{Benchmark return}} - \underbrace{r_{it}}_{\text{Leveraged fund return}}$$

Shadow cost of leverage constraints:

$$\psi_{it} = \frac{\alpha_{it} - \alpha_t^{1x}}{\delta - 1} - r_t^{GCrepo} = b_{jt} - r_t^{GCrepo} - \frac{1}{\delta - 1} \left(r_{it} - r_{it}^{1x} \right)$$

Muddies the measure and can be dominated by b_{jt} - r_t^{GCrepo}
 How about instead:

$$\psi_{it}^* = \frac{\alpha_{it}}{\delta} - \alpha_t^{1x} = r_{it}^{1x} - \frac{r_{it}}{\delta}$$

 All about funding / operating differences and not the benchmark index

Suggestion 4: Units

- \blacktriangleright Shadow cost is 0.56% per year on average. Is that large?
- How much would the intermediaries be willing to pay to increase their leverage by X?

My Take

- Measuring shadow funding costs can inform both asset pricing and financial regulation
- Leveraged funds are super interesting institutions worth further study
 - New sample collected can advance this literature
- Interesting and intuitive results explaining and predicting BAB returns using leveraged-unleveraged fund spreads
- Tying up some theoretical loose ends and connecting more to fundamentals

Other suggestions / minor point

Footnote 18: The ICR measure in He, Kelly, and Manela (2017) is the market <u>capital ratio</u> of the holding companies of primary dealers.